(от эпи... и циклоида), плоская кривая (рис.), описываемая точкой окружности, к-рая извне касается неподвижной окружности и катится по ней без скольжения. См. также Кардиоида, Циклоида, Гипоциклоида.
- плоская кривая, траектория точки окружности, катящейся по другой окружности и имеющей с ней внешнее касание. Параметрич. уравнения:
где r - радиус катящейся окружности, R - радиус неподвижной окружности, - угол, стягиваемый дугой между точками касания окружностей (см. рис.).
В зависимости от величины модуля m=R/r получаются Э. различной формы. При т=1Э.- кардиоида, при тцелом кривая состоит из тнепересекающихся ветвей. Точки возврата А 1, А2, . . .. А т имеют полярные координаты k=0,1, . . ., т-1. Вершины кривой B1, В2, . . ., В т имеют координаты
При тдробном ветви перекрещиваются; при тиррациональном число ветвей бесконечно, точка Мв исходное положение не возвращается; при
…
Далее