Поиск по словарю Математический словарь

  • В закладки
    В закладки будет добавлено толкование к данному слову в данном словаре. Закладки сохраняются на Вашем компьютере в cookie. Если Ваш браузер не поддерживает cookie или такая возможность отключена, то сохранение закладок будет не возможно.

    Арифметика

    - область знаний о числах и операциях в числовых множествах. Говоря об А., имеют в виду рассмотрение вопросов о происхождении и развитии понятия числа, приемы и средства вычислений, исследование операций с числами различной природы, анализ аксиоматич. структуры числовых множеств, свойства чисел. Когда делается упор на логич. анализе понятия числа, то иногда употребляют термин теоретическая арифметика. А. тесно связана с алгеброй, в к-рой, в частности, изучаются свойства операций над числами. Свойства же самих целых чисел составляют предмет теории чисел (см. Элементарная теория чисел, Чисел теория).

    Термин "А." иногда употребляют и тогда, когда имеют дело с операциями над объектами самой различной природы: "А. матриц", "А. квадратичных форм" и т. д.

    Культура счета возникла и развивалась задолго до создания дошедших до нас письменных памятников. Наиболее древними письменными математич. памятниками являются кахунские папирусы и знаменитый папирус Ринда, относящийся приблизительно к 2000 до н. э. Аддитивная иероглифич. система счисления позволяла египтянам сравнительно просто производить только операции сложения и вычитания натуральных чисел.

    Умножение выполнялось с помощью удвоения, т. е. множитель разбивался на сумму степеней двойки, производилось умножение на отдельные слагаемые, а затем компоненты складывались. Действия с дробями египтяне сводили к операциям саликвотными дробям п, т. е. с дробями вида -. Более сложные дроби разбивались с помощью таблиц на сумму алпквотных дробей. Деление осуществлялось вычитанием из делимого чисел, получаемых в процессе последовательного удвоения делителя. Громоздкая шестидесятичная система счисления вавилонян вызывала большие трудности при выполнении арифметич. операций. До нас дошли многочисленные таблицы, с помощью к-рых вавилоняне выполняли умножение и деление.

    А. у греков - изучение свойств чисел; они не относили к ней практику вычислений. Вопросы, связанные с техникой операций над числами, т. е. способы вычислений, составляли особую науку, наз. логистикой. Такое разделение от греков перешло в средневековую Европу. Только в эпоху Возрождения общим назв. А. стали объединять как начатки теории чисел, так и практику вычислений. Греческая математика резко разграничивала понятия числа и величины. Греческие математики называли числами только те числа, к-рые теперь наз. натуральными числами, и различали такие разнородные, по их представлениям, понятия, как числа п гео-метрич. величины. Специальные греческие сочинения по логистике до нас не дошли: все же известно, что греки применяли способ умножения, близкий к современному. Алфавитная система нумерации сильно усложняла операции над числами. Греки практиковали вычисления с обыкновенными дробями, однако дроби не рассматривались как- числа, а только как отношения натуральных чисел.

    7 -9-ю книги "Начал" Евклид (3 в. до н. э.) посвятил целиком А. в античном. <смысле этого="" слова.="" это="" прежде="" всего="" элементы="" теории="" чисел:="" алгоритм="" отыскания=""> наибольшего общего делителя (см. Евклида алгоритм), теоремы о простых числах. Евклид обосновывает коммутативность умножения, а также дистрибутивность этой операции относительно сложения. Рассматривается теория пропорций, т. е., по существу, теория дробей. В других книгах в геометрич. форме излагается общая теория отношений величин, к-рую можно рассматривать как зачатки теории действительных чисел.

    8 дошедших до нас рукописях Диофанта (вероятно, 3 в.) можно найти действия со степенями, показатели к-рых не превосходят шести, и нек-рые приемы операций с вычитаемыми. В неявной форме это операции с отрицательными числами. Сформулированные Диофантом правила применялись им только к рациональным числам.

    Китайские математики во 2 в. оперировали с дробями и отрицательными числами. Несколько позже ими рассматривались методы извлечения квадратных п кубич. корней, приближенные значения к-рых выражались в виде десятичных дробей. Применявшиеся китайскими математиками для решения арифметич. задач правила, в частности правило двух ложных положений, вошли во многие руководства по А. сначала у арабов, а затем и в Европе. О начальном периоде арифметич. культуры в Индии не имеется достаточно данных. Простейшие дроби употреблялись в Индии задолго до нашей эры. Ныне общепринятая десятичная система счисления индийского происхождения. Начиная с 5 в. имеются датированные письменные источники и они показывают высокую арифметич. культуру Индии в ту эпоху. Индийские математики оперировали с целыми и дробными числами методами, близкими к современным. Решались многие задачи на пропорции, тройное правило и проводились процентные вычисления. С 7 в. начали рассматриваться отрицательные числа. В сочинениях Бхаскары II "Венец науки" (12 в.) приводятся правила умножения и деления отрицательных чисел.

    Индийская математика оказала решающее влияние на развитие арифметич. знаний у арабов. Написанный в 9 в. Мухаммедом аль-Хорезмп трактат по А. способствовал повсеместному распространению индийской десятичной системы записи чисел и способов сложения, вычитания, умножения, деления и извлечения квадратного корня.

    У многих древних народов первоначальные приемы счета на пальцах заменяются вычислениями на абаке. Абак менял свою форму, но принцип оставался один и тот же - разграфленные колонны или к.-л. другим образом отведенные места для поразрядной отметки чисел. У греков абак употреблялся задолго до нашей эры. Абак (суан-пан) у китайцев по форме близок к нашим русским счетам, представляющим собой также разновидность абака.

    В то время как теоретико-числовые исследования в Европе возникли на базе греческой математики, в первую очередь трудов Евклида п Диофанта, совершенно иначе обстоит дело с техникой вычислений. Развитие А. в Европе связано с распространением индийской десятичной позиционной системы и арабских цифр. Техника арифметич. операций заимствована из Индии не непосредственно, а в результате ознакомления с трудами Мухаммеда аль-Хорезми и других арабских математиков.

    В средние века широко применялся абак. Он стал даже синонимом слова А., так что Леонардо Ппзанский (Leonardo Pisano, 13 в") назвал свой трактат по А. "Книга абака". В этой книге изложены заимствованные иа арабских источников приемы вычисления, однако сделаны и существенные усовершенствования. Напр., при сложении дробей используется наименьшее общее кратное знаменателей, а проверка действий производится не только, как это делали индийцы с помощью девятки, но и с использованием нек-рых других модулей, Рассматриваются задачи на тройное правило, правиле товарищества, на смешение величин, задачи, в к-рыз фигурируют рекуррентные последовательности, арифметические прогрессии и геометрические прогрессии. В Европе первые шаги в направлении применения десятичных дробей были сделаны в 15 в., но широкое распространенпе они получили только в 16 в. после выхода сочинений С. Стевина (S. Stevin).

    В 15-16 вв., да и позже, предлагались разные схемы для умножения и деления многозначных чисел. Эти схемы отличаются друг от друга, в сущности, только характером записи промежуточных вычислений. Общепринятый в настоящее время способ умножения ввел А. Ризе (A. Riese, 16 в.).

    Отрицательные числа появляются в Европе впервые у Леонардо, к-рый трактовал их в форме долга. Операции с отрицательными числами систематизируются М. Штифелем (М. Stiefel, 16 в.). Такие числа он наз. "фиктивными". В 18 в. еще рассматривались доказательства правил операций с отрицательными числами и только критич. мышление 2-й пол. 19 в. положило конец серьезному восприятию таких работ.

    Арифметич. действия над иррациональными числами до 15-16 вв. в Европе ограничивались квадратными корнями. Все же Леонардо рассматривал вопрос о приближенном вычислении не только квадратных, но и кубич. корней. С. Даль Ферро (S. Dal Ferro, конец 15 в.-начало 16 в.) и Н. Тарталья (N. Tartaglia, 16 в.) при решении уравнения 3-й степени стали употреблять кубич. корни. Общая трактовка операций с действительными числами отсутствовала. Понятие действительного числа входило в математпч. обиход только постепенно в связи с развитием аналитич. еометрии и математич. анализа.

    Вплоть до 18 в. обоснование операций над иррациональными числами ограничивалось величинами выражаемыми в радикалах. При рассмотрении квадратных уравнений математики разных эпох, начиная с индийских математиков, встречались с комплексными величинами. Однако мнимые решения отбрасывались как несуществующие. А. комплексных чисел начинается с работ Р. Бомбеллн (R. Bombelli, 16 в.), давшего формальные правила арифметич. действий над такими числами. Но и в 17 в. операции над комилексными числами производили по аналогии с операциями над действительными числами, что часто приводило к ошибкам. Только в 18 в. формулы Муавра и Эйлера обеспечили возможность четкого построения А. комплексных чисел.

    Идея введения логарифмов восходит к Архимеду (3 в. до н. э.), к-рый сравнивал члены геометрич. и арифметич. прогрессий. М. Штифель (М. Stiefel, 16 в.) продолжил сравниваемые прогрессии влево, добавив отрицательные степени. Он показал связь между операциями над этими рядами, дав, таким образом, основную идею логарифмов. Логарифмирование и использование этой операции для вычислений начали применять в 1-й пол. 17 п. после работ Дж. Непера (J. Napier) и и. Бюрги (J. Burgi).

    В 17 в. В. Шиккард (W. Schickard) и Б. Паскаль (В. Pascal) создали независимо друг от друга вычислительные машины - прототипы современных арифмометров. Но широкое практич. применение счетные машины получили только в 19 в. В сер. 20 в. распространяются быстродействующие электронные вычислительные машины. В связи с этим актуальными становятся задачи отыскания алгоритмов, позволяющих выполнять арифметич. действия с наименьшим числом элементарных операций.

    Чтобы обосновать какую-нибудь теорию, со времени Евклида считалось достаточным выделить в ней небольшое число ясных простейших первичных начал и убедиться, что все основные положения данной теории можно вывести из них чисто логически. Подразумевалось, что связь этих начал с действительным миром должна быть доступной непосредственному восприятию.

    В 19 в. был открыт метод моделей для обоснования математич. теорий. Необходимость этого метода была обусловлена тем, что в математике стали рассматриваться объекты и теории, для к-рых не удавалось найти реального истолкования. <это, прежде="" всего,="" комплексные="" числа,="" идеалы,="" неевклидовы="" и="" re-мерные="" геометрии.="" метод="" моделей="" позволял="" свести="">непротиворечивость одной математич. теории к непротиворечивости другой. Так, в предположении, что непротиворечива евклидова геометрия, была доказана непротиворечивость геометрии Лобачевского, а непротиворечивость евклидовой геометрии была сведена к непротиворечивости А. действительных чисел.