Поиск по словарю Физический словарь

  • В закладки
    В закладки будет добавлено толкование к данному слову в данном словаре. Закладки сохраняются на Вашем компьютере в cookie. Если Ваш браузер не поддерживает cookie или такая возможность отключена, то сохранение закладок будет не возможно.

    АЭРОДИНАМИЧЕСКАЯ ТРУБА

    установка, создающая поток воздуха или др. газа для эксперим. изучения явлений, сопровождающих обтекание тел. В А. т. проводятся эксперименты, позволяющие: определять силы, действующие на самолёты и вертолёты, ракеты и косм. корабли при их полёте, на подводные суда в погружённом состоянии при их движении, исследовать их устойчивость и управляемость; отыскивать оптим. формы самолётов, ракет, косм. и подводных кораблей, а также автомобилей и поездов; определять ветровые нагрузки, а также нагрузки от взрывных волн, действующие на здания и сооружения. В спец. А. т. исследуются нагревание и теплозащита ракет, косм. кораблей и сверхзвук. самолётов.
    Опыты в А. т. основываются на принципе обратимости движения, согласно к-рому перемещение тела относительно воздуха или жидкости можно заменить движением воздуха, набегающего на неподвижное тело. Для моделирования движения тела в покоящемся воздухе необходимо создать в А. т. равномерный поток, имеющий в любых точках перед моделью равные и параллельные скорости (равномерное поле скоростей), одинаковые плотность и темп-ру. При этом необходимо соблюдать условия, к-рые обеспечивают возможность переноса результатов, полученных для модели в лаб. условиях, на полноразмерный натурный объект (см. МОДЕЛИРОВАНИЕ, ПОДОБИЯ ТЕОРИЯ). При соблюдении этих условий аэродинамические коэффициенты, распределения относительных скоростей и давлений на поверхности исследуемой модели и натурного объекта одинаковы, что позволяет, определив эти хар-ки в А. т., рассчитать их значения для натурного объекта (напр., самолёта). Для того чтобы безразмерные хар-ки обтекания модели и натурного объекта были одинаковы, необходимо также, кроме геом. подобия, обеспечить в А. т. значения Маха числа М и Рейнольдса числа Re такие же, как и в полёте. А. т. подразделяют на дозвуковые и сверхзвуковые.
    Дозвуковая А. т. пост. действия (рис. 1) состоит из рабочей части 1, обычно имеющей вид цилиндра с поперечным сечением в форме круга или прямоугольника (иногда эллипса или многоугольника). Рабочая часть А. т. может быть закрытой или открытой. Исследуемая модель 2 крепится державками к стенке рабочей части А. т. или к аэродинамич. весам 3. Перед рабочей частью расположено сопло 4, к-рое создаёт поток газа с заданными и постоянными по сечению скоростью, плотностью и темп-рой
    АЭРОДИНАМИЧЕСКАЯ ТРУБА1
    Рис. 1. Дозвуковая аэродинамич. труба.
    (6 - спрямляющая решётка, выравнивающая поле скоростей). Диффузор 5 уменьшает скорость и соответственно повышает давление в струе, выходящей из рабочей части. Компрессор (вентилятор) 7 компенсирует потери энергии потока; направляющие лопатки 8 уменьшают потери энергии в нём, предотвращая появление вихрей в поворотном колене; обратный канал 9 позволяет сохранить значит. часть кинетич. энергии, имеющейся в потоке за диффузором. Радиатор 10 обеспечивает постоянство темп-ры газа в рабочей части А. т. Чтобы в к.-л. части канала А. т. статич. давление равнялось атмосферному, в нём устанавливают клапан 11. Размеры до-звук. А. т. колеблются в широких пределах: используются как большие А. т. для испытаний натурных объектов (напр., самолётов), так и миниатюрные настольные установки для научных и учебных целей.
    А. т., схема к-рой приведена на рис. 1, относится к типу т. н. замкнутых А. т. Существуют также разомкнутые А. т., в к-рых газ к соплу подводится из атмосферы или спец. ёмкостей. Существ. особенностью дозвук. А. т. явл. возможность изменения скорости газа путём изменения перепада давления.
    Сверхзвуковые А. т. Схема сверхзвуковой А. т. в общих чертах аналогична схеме дозвук. А. т. Для получения сверхзвук. скорости газа в рабочей части А. т. перед рабочей частью устанавливают т. н. сопло Лаваля. Каждому числу М соответствует определ. контур сопла. Поэтому в сверхзвук. А. т. для получения потоков с разл. значениями числа М в рабочей части применяют сменные сопла или сопло с регулируемым контуром, позволяющим менять его форму. Диффузор сверхзвук. А. т., как и сопло, имеет форму сходящегося - расходящегося канала. Для уменьшения потерь применяют регулируемые диффузоры, мин. сечение к-рых можно менять в процессе запуска установки. В сверхзвук. А. т. потери энергии в ударных волнах, возникающих в диффузоре и при обтекании самой модели, велики, поэтому для компенсации этих потерь сверхзвук. А. т. имеют многоступенчатые компрессоры и более мощные силовые установки, чем дозвук. А. т.
    АЭРОДИНАМИЧЕСКАЯ ТРУБА2
    Рис. 2. Схема двух баллонных аэродинамич. труб с повышенным давлением на входе в сопло и пониженным давлением на выходе из диффузора, создаваемым а - двухступенчатым эжектором и б - вакуумным газгольдером: 1 - компрессор высокого давления; 2 - осушитель воздуха; 3 - баллоны высокого давления; 4 - дроссельный кран; 5 - ресивер сопла; 6 - сопло; 7 - модель; 8 - диффузор аэродинамич. трубы; 9 - эжекторы; 10 - дроссельные краны; 11 - диффузор эжектора; 12 - быстродействующий кран; 13 - вакуумный газгольдер; 14 - вакуумный насос; 15 - подогреватель воздуха.
    Широкое распространение получили также баллонные А. т. (рис. 2), в к-рых для создания перепада давления перед соплом помещают баллоны высокого давления, содержащие газ при давлении от 1 до 100 МН/м2 (1000 кгс/см2), а за диффузором - вакуумные ёмкости (газгольдеры), откачанные до абс. давления 100-0,1 Н/м2 (10-3 - 10-6 кгс/см2), или систему эжекторов.
    Одной из осн. особенностей А. т. для получения потоков с большими числами М (>5) явл. возможность конденсации воздуха в результате понижения темп-ры с ростом числа М. Эта конденсация существенно изменяет параметры струи, вытекающей из сопла, и делает её практически непригодной для аэродинамич. эксперимента. Поэтому А. т. больших чисел М имеют подогреватели воздуха. Темп-pa Т0, до к-рой необходимо подогреть воздух, тем больше, чем больше число М в рабочей части А. т. и давление р0 перед соплом. Напр., для предотвращения конденсации воздуха в А. т. при числах M»10 и р0=5 МН/м2 (50 кгс/см2) необходимо подогреть воздух до абс. темп-ры T0»1000 К.
    Для получения очень больших M=25 в А. т. со схемой, близкой к приведённой на рис. 2, в кач-ве рабочего газа вместо воздуха применяют гелий, конденсация к-рого происходит при достаточно низких темп-pax, и подогреватель в большинстве случаев оказывается ненужным.
    Исследования теплообмена на поверхности летат. аппаратов также проводят на моделях в А. т., соблюдая условия подобия. В случаях, когда необходимо учитывать влияние физ.-хим. превращений за ударными волнами, излучение газа и т. п., используются ударные А. т., в к-рых темп-ры достигают значений 8000- 15 000 К. При этом длительность эксперимента составляет =10 мс. Однако исследования теплозащиты поверхности летат. аппаратов и теплообмена можно проводить при более низких темп-pax, обеспечивая достаточную длительность эксперимента. В этом случае применяются электродуговые А. т. (рис. 3), в к-рых воздух, подаваемый в форкамеру сопла, подогревается в электрич. Дуге
    АЭРОДИНАМИЧЕСКАЯ ТРУБА3
    Рис. 3. Схема электродуговой аэродинамич. трубы: 1 - центральный (грибообразный) электрод, охлаждаемый водой; 2 - стенки камеры, переходящие в сверхзвук. сопло, охлаждаемое водой; 3 - рабочая часть с высотной камерой; 4 - модель; 5 - диффузор; в - дуговой разряд; I- контакты для подведения электрич. тока дугового разряда; II - контакты для подведения электрич. тока к индукц. катушке.
    до темп-ры =6000 К. Дуга, образующаяся в кольцевом канале между охлаждаемыми поверхностями центр. электрода 1 и камеры 2, вращается с большой частотой магн. полем, создаваемым индуктивной катушкой 7 (вращение дугового разряда необходимо для уменьшения эрозии электродов). А. т. этого типа позволяет получать числа М до 20 при длительности эксперимента в неск. с. Однако давление в форкамере обычно не превышает 10 МН/м2 (100 кгс/см2).
    Большие давления в форкамере =60 МН/м2 (600 кгс/см2) и большие значения числа М получают в т. н. импульсных А. т., в к-рых для нагревания газа применяется искровой разряд батареи высоковольтных конденсаторов. Темп-pa в форкамере импульсной А. т. =6000 К, время работы - неск. десятков мс.
    В особую группу можно выделить криогенные А. т., моделирующие течения на больших высотах. В этих установках разреженный газ после обтекания исследуемой модели конденсируется на поверхности криогенных панелей.