Поиск по словарю Физический словарь

  • В закладки
    В закладки будет добавлено толкование к данному слову в данном словаре. Закладки сохраняются на Вашем компьютере в cookie. Если Ваш браузер не поддерживает cookie или такая возможность отключена, то сохранение закладок будет не возможно.

    ПРОСТРАНСТВЕННАЯ ДИСПЕРСИЯ

    зависимость тензора диэлектрической проницаемости среды eij(w, k) от волнового вектора, обусловленная нелокальностью связи между электрич. индукцией D и напряжённостью электрич, поля E. Нелегальность связи D и E приводит к ряду явлений, наз. эффектами П. д., таких, как вращение плоскости поляризации, анизотропия кубич. кристаллов.
    Вектор D(r) в к.-л. точке r среды не определяется однозначно величиной Е(r) в этой точке, а зависит также от значений Е(r') в соседних точках r', расположенных вблизи точки r. Такая нелокальность связи между D(r) и E(г) ясна, напр., из качеств. рассмотрения самой простой модели кристалла, согласно к-рой ч-цы, составляющие крист. решётку (атомы, молекулы, ионы), совершают колебания около своего положения равновесия и взаимодействуют друг с другом. Электрич. поле световой волны смещает заряды из положения равновесия, что вызывает дополнит. смещение зарядов в соседних и более удалённых ч-цах крист. решётки. Поэтому поляризация среды P(r), a следовательно, и индукция D(r)=E(r)+4pР(r) зависят от значений напряжённости не только в одной выделенной точке, но и в её окрестности. Это относится не только к кристаллам, но и к изотропным средам, состоящим из асимметричных молекул. Размеры области взаимного влияния (а) составляют обычно величину порядка постоянной решётки (=10-7 см) или размера молекул (для диэлектрич. сред). Длина световой волны l на неск. порядков превышает размеры этой области, поэтому на протяжении а значение поля световой волны существенно не меняется. Для описания взаимного влияния ч-ц достаточно представить электрич. поле в соседних точках r' в виде разложения в ряд Тейлора по степеням смещений относительно точки r (xj, xl, xm) и ограничиться первыми членами разложения (xj, xl, xm- декартовы компоненты вектора r). Тогда соотношение между D и E можно записать в виде:
    ПРОСТРАНСТВЕННАЯ ДИСПЕРСИЯ1
    причем производные вычисляются в точке r. Для плоской монохроматич. волны, к-рую можно представить в форме
    D(r,t)=D0exp(-i(wt-kr));
    E(r, t)=E0exp( -i(wt-kr)), (2)
    где D0 и E0- пост. комплексные векторы, a k - волновой вектор, имеем дEi/дxl=iklEj. При учёте последнего выражение (1) приводится к виду
    Di(r)=Seij(w, k)Ej(r, t), (3)
    где тензор eij(w, k) даётся соотношением
    ПРОСТРАНСТВЕННАЯ ДИСПЕРСИЯ2
    Т. о., в случае плоских монохроматич. волн связь между D(r, t) и Е (r, t) осуществляется тензором второго ранга.
    С первым членом выражения (4) связаны частотная дисперсия и двойное лучепреломление, обусловленное различием показателей преломления обыкновенной no и необыкновенной ne. волн (no/ne=10-1). Второй и третий члены выражения (4) пропорц. а/l и (а/l)2 (тензоры gijl и aijlm пропорц. соответственно и а и а2; k=2p/l). Если размер области взаимного влияния - 10-7 см и l»3•10-5 см, то а/l»З•10-3, а (а/l)2=10-5. Это очень малые величины, однако именно ими объясняются эффекты П. д. Если принять в расчёт только два первых члена в выражении (4) для eij(w, k), то
    D (r, t)=e(w)E(r, t)+ig(w) (Е (r, t)k). (5)
    Вектор (Ek) перпендикулярен к E и k; множитель i указывает на сдвиг фазы второго члена в выражении (5) относительно первого на p/2. Второй член и приводит к различию фазовых скоростей (или показателей преломления) для волн с правой и левой круговой поляризацией, т. е. к естеств. оптической активности - вращению плоскости поляризации и зависимости угла поворота от К.
    В средах, обладающих центром, симметрии, величина g(w) тождественно обращается в ноль и эффекты П. д. проявляются благодаря третьему члену выражения (4). Эти слагаемые обусловливают анизотропию кубич. кристаллов, имеющих центр симметрии, пропорциональную (а/l)2 и, следовательно, очень малую. Именно вследствие малости эффекта он был обнаружен экспериментально только в 1960 Е. Ф. Гроссом и А. А. Каплянским в кристалле закиси меди CuO2, хотя на возможность этого эффекта указывал ещё голл. физик X. Лоренц, в 1878.
    П. д. проявляется также в возможности распространения в кристаллах не двух, а трёх или даже четырёх волн с разл. фазовыми скоростями. Добавочные световые волны, как показывают расчёты, могут быть существенными при w, близких к частотам полос поглощения кристалла. Добавочные волны возможны не только в кристаллах, но и в плазме. Теория эффектов П. д. тесно связана с теорией экситонов. П. д. учитывалась при изучении таких вопросов, как аномальный скин-эффект в металлах, колебания крист. решётки и т. п.