ядерные реакции между лёгкими ат. ядрами, протекающие при очень высоких темп-рах (=108К и выше). Высокие темп-ры, т. е. достаточно большие относительные энергии сталкивающихся ядер, необходимы для преодоления электростатич. барьера, обусловленного взаимным отталкиванием ядер (как одноимённо заряж. ч-ц). Без этого невозможно сближение ядер на расстояние порядка радиуса действия яд. сил, а следовательно, и «перестройка» ядер, происходящая при Т. р. Поэтому Т. р. в природных условиях протекают лишь в недрах звёзд, а для их осуществления на Земле необходимо сильно разогреть в-во либо ядерным взрывом, либо мощным газовым разрядом, либо гигантским импульсом лазерного излучения или бомбардировкой интенсивным пучком ч-ц.
Табл. 1.
Т. р., как правило, представляют собой процессы образования сильно связанных ядер из более рыхлых и потому сопровождаются выделением в продуктах реакции избыточной кинетич. энергии, равной увеличению суммарной энергии связи (см. ЯДЕРНАЯ ЭНЕРГИЯ). При этом сам механизм этого экзоэнергетич. сдвига к ср. части периодич. системы элементов Менделеева здесь противоположен тому, к-рый имеет место при делении тяжёлых ядер: почти все практически важные Т. р.- это реакции слияния (синтеза) лёгких ядер в более тяжёлые. Имеются и исключения: благодаря особой прочности ядра 4Не (a-частица) возможны экзоэнергетич. реакции деления лёгких ядер (по меньшей мере одна из них, «чистая» реакция 11В+р В® 34Не+8,7 МэВ, по-видимому, также может представить практический интерес).
Большое энерговыделение в ряде Т. р. обусловливает их важность для астрофизики, прикладной яд. физики и яд. энергетики. Чрезвычайно интересна также роль Т. р. в дозвёздных и звёздных процессах синтеза ат. ядер хим. элементов (нуклеогенеза).
Скорости Т. р.
В табл. 1 для ряда Т. р. приведены значения энерговыделения, максимального сечения sмакс - осн. величины, характеризующей вероятность Т. р., и соответствующей энергии налетающей ч-цы (в ф-ле реакции - первой слева).
Гл. причина очень большого разброса сечений Т. р.- резкое различие вероятностей собственно ядерных («послебарьерных») превращений. Так, для большинства реакций, сопровождающихся образованием наиболее сильно связанного ядра 4Не, сечение велико, тогда как для реакций, обусловленных слабым взаимодействием (напр., р+рВ®d+e++n), оно весьма мало.
Т. р. происходят в результате парных столкновений между ядрами, поэтому число их в ед. объёма в ед. времени равно n1n2< ns(v)="">, где n1, n2 - концентрации ядер 1-го и 2-го сортов (если ядра одного сорта, то n1, n2 следует заменить на 1/2 n2), v - относит. скорость сталкивающихся ядер (распределение скоростей в дальнейшем принимается максвелловским; (см. МАКСВЕЛЛА РАСПРЕДЕЛЕНИЕ)). Температурная зависимость скорости Т. р. определяется множителем . В практически важном случае «не очень высоких» темп-р Т?(107-108)К она может быть приближённо выражена в виде, одинаковом для всех Т. р. В этом случае относит. энергии ? сталкивающихся ядер, как правило, значительно ниже высоты кулоновского барьера, к-рая даже для комбинации ядер с наименьшим ат. номером Z=1 составляет =200 кэВ, что соответствует (по соотношению ?=kT) T=2.109 К. Следовательно, вид s(v) определяется в осн. вероятностью туннельного прохождения сквозь барьер (см. ТУННЕЛЬНЫЙ ЭФФЕКТ). Результат имеет вид:
где const - постоянная, характерная для данной реакции, Z1, Z2 - ат. номеpa сталкивающихся ядер, m=m1m2/(m1+m2)- их приведённая масса, е - заряд эл-на. Кроме того, в ряде случаев собственно яд. вз-ствия обусловливают резонансный хар-р зависимости s(v) (наибольшие из значений sмакс в табл. 1).
Т. р. во Вселенной играют двоякую роль - как осн. источник энергии звёзд и как механизм нуклеогенеза. Для нормальных гомогенных звёзд, в т. ч. Солнца, гл. процессом экзоэнергетич. яд. синтеза явл. сгорание Н в Не, точнее, превращение четырёх протонов в ядро 4Не, два позитрона и два нейтрино. Этот результат можно получить двумя путями (нем. физик X. Бете и др., 1938-39): 1) в протон-протонной, (рр) цепочке, или водородном цикле (табл. 2); 2) в углеродно-азотном (CN), или углеродном, цикле (табл. 3).
Табл. 2. ВОДОРОДНЫЙ ЦИКЛ
Первые три реакции входят в полный цикл дважды.
Времена реакций рассчитаны для условий в центре Солнца: Т= 13 млн. К (по др. данным, 16 млн. К), плотность Н - 100 г/см3. В скобках указана часть энерговыделения, безвозвратно уходящая с v.
В CN-цикле ядро 12С играет роль катализатора.
Табл. 3. УГЛЕРОДНЫЙ ЦИКЛ
Для Солнца и менее ярких звёзд в полном энерговыделении преобладает рр-цикл, а для более ярких звёзд - CN-цикл. В начале 70-х гг. всеобщая уверенность в термояд. механизме генерации солн. энергии была временно поколеблена тем фактом, что непосредственно измеренный поток солн. нейтрино, достигающий Земли, оказался значительно меньше теоретически ожидаемого для рр-цикла. Однако последующие измерения снизили это расхождение до множителя =3, что в совокупности с неточностью как измерений, так и теор. модели Солнца (в частности, темп-ры в его центре) в осн. рассеяло возникшие сомнения. Водородный цикл разветвляется на три варианта. При достаточно больших концентрациях 4Не и T>(10- 15) млн. К в полном энерговыделении начинает преобладать вторая ветвь рр-цикла, отличающаяся от приведённой в табл. 2 заменой реакции 3Не+3Не на цепочку:
3Не+4Не В®7Ве+g, 7Ве+е-В® 7Li +g, p+7Li В® 24He,
а при ещё более высоких Т.- третья ветвь:
3Не+4Не В®7Ве+g, р+7ВеВ®8В+g, 8ВВ®8Be+e++n, 8BeВ®24He.
Для звёзд-гигантов с плотными выгоревшими (по содержанию Н) ядрами существенны гелиевый и неоновый циклы Т. р.; они протекают при значительно более высоких темп-рах и плотностях, чем рр- и CN-циклы. Осн. реакцией гелиевого цикла, идущей начиная с Т»200 млн. К, является т. н. процесс Солпитера: 34Не В®12C+g1+g2+7,3 МэВ (процесс двухступенчатый, идущий через промежуточное ядро 8Ве). Далее могут следовать реакции 12С+4Не В® 16О+g, 16O+4Не В® 20Ne+g; в этом состоит один из механизмов нуклеогенеза. Интересно, что сама возможность процесса Солпитера, а тем самым и нуклеогенеза большинства элементов (предпосылка возникновения всех форм жизни!) связана с таким случайным обстоятельством, как большая «острота» резонанса в зависимости s(v) для яд. реакции 34НеВ®12С, обеспечиваемая наличием подходящего дискр. уровня энергии у ядра 8Ве.
Если продукты реакций гелиевого цикла вступят в контакт с Н, то осуществится неоновый (Ne-Na) цикл, в к-ром ядро 20Ne играет роль катализатора для процесса сгорания Н в Не. Последовательность реакций здесь вполне аналогична CN-циклу (табл. 3), только ядра 12С, 13N, 13C, 14N, 15O, 16N заменяются соотв. ядрами 20Ne, 21Na, 21Ne, 22Na, 23Na, 23Mg. Мощность этого цикла как источника энергии невелика. Однако он, по-видимому, имеет большое значение для нуклеогенеза, т. к. одно из промежуточных ядер цикла (21Ne) может служить источником нейтронов: 21Ne+4He В®24Mg+n (аналогичную роль может играть и ядро С, участвующее в CN-цикле).
Последующий «цепной» захват нейтронов, чередующийся с процессами b-распада, явл. механизмом синтеза всё более тяжёлых ядер.
Ср. интенсивность энерговыделения e в типичных звёздных Т. р. по земным масштабам ничтожна; так, для Солнца (в ср. на 1 г солн. массы) e=2 эрг/с•г. Это гораздо меньше, напр., скорости энерговыделения в живом организме в процессе обмена в-в. Однако вследствие огромной массы Солнца (2•1033 г) полная излучаемая им мощность (4•1026 Вт) чрезвычайно велика (она соответствует ежесекундному уменьшению массы Солнца приблизительно на 4 млн. т).
Благодаря колоссальным размерам и массам Солнца и звёзд в них идеально решается проблема удержания (в данном случае гравитационного) и термоизоляции плазмы: Т. р. протекают в горячем ядре звезды, а теплоотдача происходит с удалённой от ядра и гораздо более холодной поверхности. Только поэтому звёзды могут эффективно генерировать энергию в таких медленных процессах, как рр- и CN-циклы (табл. 2 и 3). В земных условиях эти процессы практически неосуществимы; напр., фундам. реакция p+pВ®d+e+ +n непосредственно вообще не наблюдалась.
Т. р. в земных условиях. На Земле имеет смысл использовать лишь наиболее эффективные из Т. р., прежде всего связанные с участием дейтерия и трития. Подобные Т. р. в сравнительно крупных масштабах осуществлены пока только в испытательных взрывах термоядерных, или водородных, бомб. Вероятная схема реакций в термояд. бомбе включает Т. р. 12, 7, 4 и 5 (табл. 1), но возможны и другие Т. р., напр. 16, 14, 3.
Использованием Т. р. в мирных целях может явиться управляемый термоядерный синтез (УТС), с к-рым связывают надежды на решение энергетич, проблем человечества, поскольку дейтерий, содержащийся в воде океанов, представляет собой практически неисчерпаемый источник дешёвого горючего для управляемых Т. р. Для УТС наиболее важны Т. р. 7, 5 и 4 (а также 12 для регенерации дорогостоящего трития).
Независимо от целей непосредств. получения энергии термоядерный реактор может быть использован в кач-ве мощного источника быстрых нейтронов. Последние могут быть использованы, в частности, в энергетич. целях в последующих реакциях деления тяжёлых ядер (см. ДЕЛЕНИЕ АТОМНОГО ЯДРА) в окружающем реактор бланкете из урана (или тория). Это т. н. гибридный реактор, работающий по схеме «синтез - деление» и являющийся одним из звеньев программы УТС. С другой стороны, заметное внимание привлекли к себе и «чистые» Т. р., но дающие нейтронов, напр. реакции 10, 20 (табл. 1).